nuclear.engineer.loxblog.com سایت جامع مهندسی هسته ای وفیزیک هسته ای |
||||||||||||||||||||||||||||||||
علم فیزیکعلم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه میکند. مفاهیم بنیادی پدیدههای طبیعی تحت عنوان قوانین فیزیک مطرح میشوند. این قوانین به توسط علوم ریاضی فرمول بندی میشوند، بطوری که قوانین فیزیک و روابط ریاضی باهم در توافق بوده و مکمل هم هستند و دوتایی قادرند کلیه پدیدههای فیزیکی را توصیف نمایند. تاریخچه علم فیزیک
نقش فیزیک در زندگی
فیزیک و سایر علوم
دانشمندان فیزیکفیزیک و آیندهبا این روند رو به رشدی که علم فیزیک در کنار سایر علوم دارد، میتوان امیدوار بود که در آینده به چراها و چگونگیهای عالم طبیعت پاسخ داده شود و این دنیای فیزیک سکوی پرتاب به عالم متا فیزیک باشد.
جمعه 15 شهريور 1392برچسب:, :: 2:6 :: نويسنده : مهسا بلاغی
تایخچه الکترومغناطیس{ این مطلب در ارتباط بادرس الکترومغناطیس از درسهای رشته مهندسی هسته ای تهیه شده است}
الکترومغناطیس
الکتریسیته و مغناطیس سالها پدیدههایی جدا از هم پنداشته میشدند و بعد از کشفیات مایکل فارادی و ماکسول بود که وحدت این دو نیرو مشخص گردید. پدیدههای مرتبط با آهنرباها و نیز آذرخش منشا الکترومغناطیسی دارند.
الکترومغناطیس شاخهای از علم فیزیک است که به مطالعهٔ پدیدههای الکتریکی و مغناطیسی و ارتباط این دو با هم میپردازد. از طرفی یکی از چهار نیروی بنیادی طبیعت است (سه نیروی دیگر نیروی هستهای قوی، نیروی هستهای ضعیف و گرانش هستند). در نظریهٔ الکترومغناطیس این نیروها بهوسیلهٔ میدانهای الکترومغناطیسی توصیف میشوند. الکترومغناطیس توصیفگر بیشتر پدیدههاییست (به جز گرانش) که در زندگی روزمره اتفاق میافتد. الکترومغناطیس همچنین نیروییست که الکترونها و پروتونها را در داخل اتمها پیش هم نگه میدارد. درحقیقت حامل همهٔ نیروهای درون مولکولی٬ نیروی الکترومغناطیسی است. نیروی الکترومغناطیسی به دو صورت نیروی الکتریکی و نیروی مغناطیسی بروز میکند که این دو جنبههای مختلف از یک چیز (نیروی الکترومغناطیسی) هستند و از این رو ذاتاً یه یکدیگر مربوطاند. تغییر میدان الکتریکی تولید میدان مغناطیسی و برعکس تغییر میدان مغناطیسی تولید میدان الکتریکی میکند. این اثر به نام القای الکترومغناطیسی شناخته شده است و اساس کار ژنراتورهای الکتریکی، موتورهای القایی و ترانسفورمرها میباشد. میدانهای الکتریکی عامل چند پدیدهٔ الکتریکی معمول مانند پتانسیل الکتریکی (مانند ولتاژ باتری) و جریان الکتریکی (مانند جریان برق) و میدانهای مغناطیسی عامل نیروی مربوط با آهنرباها هستند. در الکترودینامیک کوانتومی ٬ نیروی الکترومغناطیسی بین ذرات باردار را میتوان از طریق روش نمودارهای فاینمن محاسبه کرد که در آن تصور میشود که ذرات پیامرسان به نام فوتن مجازی بین ذرات باردار مبادله میشود. مفاهیم نظری الکترومغناطیس منجر به توسعه نسبیت خاص توسط آلبرت اینشتین در سال ۱۹۰۵ شدهاست. تاریخچه الکترومغناطیس[ویرایش]در ابتدا تصور بر این بود که الکتریسیته و مغناطیس به عنوان دو نیروی جدا از هم عمل میکنند. با این حال این تغییر دیدگاه، با انتشار رساله الکتریسیته و مغناطیس جیمز کلارک ماکسول در تاریخ '۱۸۷۳ است که در آن نشان داده میشود تعامل بارهای مثبت و منفی توسط یک نیروی تنظیم میشد. چهار اثر عمده ناشی از این تداخلات، به وضوح توسط آزمایشها نشان داده شدهاند، وجود دارد: ۱-نیروی الکتریکی جذب و یا دفع کننده بارها توسط یک دیگرمتناسب با معکوس مربع فاصله بین آنها است. ۲-قطب مغناطیسی همیشه به صورت جفت توسط خطوط میدان مغناطیسی به هم متصل میشوند : قطب شمال مغناطیسی به قطب جنوب مغناطیسی متصل است. ۳-جریان الکتریکی در سیم حامل جریان، میدان مغناطیسی دایرهای اطراف سیم ایجاد میکند، که جهت آن بسته به جهت جریان است. ۴-هنگامی که حلقه سیم به سمت میدان مغناطیسی یا دور از میدان مغناطیسی حرکت کند و یا میدان مغناطیسی به سمت نزدیک شدن ویا دور شدن از آن نقل مکان کند، جهت آن بسته به جهت جریان در آن جنبش است.منابع-۱ زمانی که هانس کریستین اورستد در حال آماده شدن برای سخنرانی شب در ۱۸۲۰ آوریل ۲۱ بود، مشاهدات شگفت آوری کسب کرد .او متوجه شد که سوزن قطب نما زمانی که جریان الکتریکی حاصل از باتری روشن و خاموش میشد، از قطب مثیت منحرف میگردید. این انحراف او را متقاعد کرد که، میدانهای مغناطیسی از طرف یک سیم حامل جریان الکتریکی تاثیر میپذیرد ورابطه مستقیم بین الکتریسیته و مغناطیس وجود دارد. به زودی او به یافتههای خود را به چاپ رسانید که به نشان میداد جریان الکتریکی تولید میدان مغناطیسی حول یک سیم حامل جریان میکند. CGS واحد القاء مغناطیسی (oersted) است به نام و به افتخار او نامگذاری شدهاست. این اتحاد که توسط مایکل فارادی مشاهده شد، توسط جیمز کلارک ماکسول گسترش یافت و بخشی از آن مجددا توسط الیور هویساید و هاینریش هرتز فرمول بندی شد ٬ یکی از بزرگترین دستاوردهای فیزیک ریاضی در قرن ۱۹ام بهشمار میرود. از آن پس٬ الکترومغناطیس ٬همواره به عنوان مدلی برای توسعه فیزیک مطرح بوده است. بررسی اجمالی[ویرایش]نیروی الکترومغناطیسی یکی از۴ نیروهای بنیادی طبیعت است . نیروی الکترومغناطیس توصیفگر بیشتر پدیدههایی است(به جز گرانش) که در زندگی روزمره اتفاق میافتد.الکترومغناطیس همچنین نیرویی است که الکترونها و پروتونها را در داخل اتمها پیش هم نگه میدارد. الکترودینامیک کلاسیک[ویرایش]نظریه دقیق الکترومغناطیس، معروف به الکترومغناطیس کلاسیک، توسط فیزیکدانان طی قرن ۱۹، که در اوج کار جیمز کلرک ماکسول، که متحد تحولات قبل به تئوری واحد و کشف ماهیت الکترومغناطیسی نور است. در الکترومغناطیس کلاسیک، میدان الکترومغناطیسی توسط مجموعهای از معادلات شناخته شده به عنوان معادلات ماکسول، و نیروی الکترومغناطیسی داده شده توسط قانون نیروی لورنتس توجیه میشود.یکی از خصوصیات الکترومغناطیس کلاسیک است که به سختی با مکانیک کلاسیک سازگار است، اما سازگاری آن با نسبیت خاص به راحتی قابل نشان دادن است. با توجه به این که در معادلات ماکسول، سرعت نور در خلاء ثابتی است جهانی، و تنها وابسته به گذردهی الکتریکی و نفوذپذیری مغناطیسی در فضای خلا میباشد. این ناقض قوانین سرعت گالیلهای، سنگ بنای اولیه از[ مکانیک کلاسیک] است. یک راه برای آشتی دادن دو نظریه این است که فرض وجود [اتر] درخشان که از طریق آن نور حرکت میکند. با این حال، پس از آن تلاشهای تجربی موفق به شناسایی حضور اتر نشد. پس از کمکهای مهم هندریک لورنتس و هنری Poincaré، در سال ۱۹۰۵، آلبرت انیشتین مشکل را با مقدمهای از نسبیت خاص، که جایگزین جدید تئوری حرکتشناسی کلاسیک است که سازگار با الکترومغناطیس کلاسیک است، حل کرد. . علاوه بر این، تئوری نسبیت نشان میدهد که فریم درحال حرکت مرجع میدان مغناطیسی تبدیل به یک میدان غیر صفر با مولفه الکتریکی و بالعکس میشود، بنابراین بصورتی پایدار و محکم که نشان میدهد آنها دو طرف یک سکه هستند، و به این ترتیب اصطلاح «الکترومغناطیس» نشان داده میشود. نیروی لورنتس[ویرایش]
به طوریکه "F" نشان دهندهٔ بردار نیرو، "q" مقدار بار الکتریکی ذرهٔ متحرک در میدان ، "E" مقدار میدان الکتریکی ، "V" بردار سرعت ذرهٔ متحرک در میدان و "B" بردار میدان مغناطیسی میباشد. جمعه 15 شهريور 1392برچسب:, :: 2:1 :: نويسنده : مهسا بلاغی
معرفی وآشنایی با فیزیک پزشکی (Medicale Physics)می توان گفت فیزیک پزشکی شاخهای کاربردی از فیزیک است که با کاربردهای انرژی برای تشخیص و درمان بیماریها سر و کار دارد، و با الکترونیک پزشکی، مهندسی زیست، و فیزیک بهداشت (کنترل و محافظت از پرتو) رابطه نزدیکی دارد. به عبارت دیگر ، میتوان چنین بیان کرد که فیزیک پزشکی ، ابزاری بسیار قوی و قدرتمند است که میتواند در اختیار پزشکان و مهندسان پزشکی قرار گیرد.
ویژگی های فیزیک پزشکی: * کاربرد علم فیزیک در نیازهای پزشکی. *زاییده تحقیقات دو جایزه نوبل در فیزیک، و باعث دو جایزه نوبل در پزشکی و فیزیولوژی. * عهده دار پایههای فنی علومی چون رادیولوژی، آنکولوژی پرتویی، و پزشکی هستهای. * ساخته شده بر پایههای علم فیزیک، اما با پیکر دانش و پژوهشی مجزا. * علمی مجزا از بیوفیزیک. * در برگیرنده روشهای تجربی و نظری، اما ذاتاً یک رشتهء کاربردی. متـخصصیــن فیـزیك پزشـكـی میتوانند در بخـشهای رادیـوتراپی در رابطه باطراحی درمان ، دزیمتری ، كنترل كیفی دستگاههـا و بعنـوان مشـاور درخرید سیستم ها و همچــنین بعنوان مسئـول فیزیك بهداشـت بخش رادیو تراپی انـجام وظـیـفه نمایند . در بخشهای رادیولژی و پزشكی هســته ای نــیز وظایـف مشابــهی از جمـله مشـاوره درخـرید دستگــاه ، انجـام آزمـون پــذیـرش سیـستم پـس ازنصب ، كنترل كـیفی دستگاهها و بعـنوان مسئول فیـزیك بهـداشت فعـال باشـند . بـدلیـل عدم حضور مــتخصـصیــن فیزیك پزشكی در این بخشها علاوه بر صدمات جبران ناپــذیر جـانی ومالـی و نارســائیـهای بسـیار زیادی دربخشـهای مختـلف را بـوجود می آورد . ![]() شاخه بندی فیزیک پزشکی فیزیک پزشکی امروزه گسترهء قابل توجهی از علوم و فناوریهای متفاوتی را پوشش میدهد و در بر گیرندهء موضوعات و مباحث متعددی از رادیوبیولوژی گرفته تا پردازش سیگنال میباشد. لذا دشوار بتوان مرزهای معین و مشخصی را برای آن تعریف کرد. اما غالبا فیزیک پزشکی را میتوان به چهار دسته متفاوت کلاسه بندی کرد. تصویر برداری تشخیصی تصویربرداری پزشکی (Diagnostic Imaging): در این شاخه از فیزیک پزشکی، با مدالیتههایی همچون سی تی اسکن، ام آر آی (تصویر برداری تشدید مغناطیسی)، سونوگرافی، ماموگرافی، فلوروسکوپی، و رادیوگرافی معمولی میتوان سر و کار داشت.8 پرتوشناسی زیرمجموعهء این شاخه از فیزیک پزشکیست. طراحی و ضمانت کارکرد صحیح (accreditation) و کنترل کیفیت (Quality Control) اینگونه دستگاهها بر عهدهء فیزیکدانهای پزشکی میباشد. فیزیک بهداشت فیزیک بهداشت (Health Physics): در این شاخه از فیزیک پزشکی بر روی مباحثی تمرکز میشود که سرو کار با محاسبات کنترل کیفیت (Quality Control) و بویژه دوزیمتری، و شرایط محافظت از پرتوهای یونیزان (Radiation Protection) در محیطهای متفاوت دارد. طراحی سیستمهای حفاظتی در بخشهای رادیوتراپی و پرتوافکن در بیمارستانها، وضع قوانین و پروتوکولهای کار با رادیوایزوتوپهای گوناگون و ضایعات هستهای در سطح کشوری، و حتی مسئولیت ضمانت سیستمهای پوششی (Shielding calculations) و حفاظتی راکتورهای هستهای از وظایف متخصصین فیزیک بهداشت میباشد. رادیوتراپی رادیوتراپی (Radiation Therapy): در پزشکی معضلات زیادی (بطور مثال بسیاری از سرطانها) را میتوان نام برد که توسط پرتوزایی (گاما، الکترون، پروتون، و نوترون) معالجه و یا حتی مداوا میشوند. مسئولیت عملکرد و تضمین کارکرد (Quality Control and Accreditation) اینگونه سیستمها بر عهدهء متخصص رادیو تراپی است.9 در فرم نوین، متخصصین این رشته اغلب بر روی و یا با دستگاههای پرتوزایی نظیر چاقوی گاما، سایبر نایف، پروتون درمانی، لیناک، و یا توموتراپی مطالعه و سرو کار دارند، و یا در زمینههایی مثل برکیتراپی تخصص میگیرند. ![]() پزشکی هستهای پزشکی هستهای (Nuclear Medicine): با مدالیتههایی نظیر اسپکت (SPECT) و پت اسکن (PET) سرو کار دارد. در حقیقت این شاخه هم یک نوع تصویر برداری پزشکی است، اما از آنجایی که مکانیزم تولید پرتو اینجا بر خلاف منشا فتو الکتریکی و عبوری (transmission) منشا in vivo رادیو ایزوتوپی دارد (emission)، این شاخه را اغلب متمایز از سایر مدالیتهها دانستهاند. عواقب بیتوجهی به فیزیک پزشکی بیتوجهی به اصول فیزیکی حاکم بر کار تشخیص و درمان ، باعث تشدید بیماری ، اتلاف وقت و سرمایه ملی و بالاخره اتلاف جان بیماران خواهدشد. به عنوان مثال ، میتوان از بیدقتی در اندازهگیری مواد رادیواکتیو مصرفی در بخش پزشکی هستهای یاد کرد که گاهی باعث نمایش نادرست تصویر ارگان مورد آزمایش میشود. اگر بخواهیم تمام ناهماهنگیها و گرفتاریهای حاصل از ناآگاهی از فیزیک پزشکی را بیان کنیم، شاید چندین مقاله نیز کفایت نکند. می توان گفت فیزیک پزشکی شاخهای کاربردی از فیزیک است که با کاربردهای انرژی برای تشخیص و درمان بیماریها سر و کار دارد، و با الکترونیک پزشکی، مهندسی زیست، و فیزیک بهداشت (کنترل و محافظت از پرتو) رابطه نزدیکی دارد چگونه فیزیک پزشکی بخوانیم؟ فیزیک پزشکی یکی از گرایشهای فیزیک در مقطع کارشناسی ارشد میباشد. به بیان دیگر ، دانشجویان رشته فیزیک بعد از اخذ مدرک کارشناسی در این رشته ، میتوانند بعد از امتحان ورودی وارد رشته فیزیک پزشکی شده و مدرک فوق لیسانس خود را در این رشته اخذ نمایند. البته لازم به ذکر است که در کشور ما ، در مقایسه با سایر گرایشهای رشته فیزیک که در بیشتر دانشگاهها ارائه میگردد، گرایش فیزیک پزشکی در تعداد کمی از دانشگاهها وجود دارد.( دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، دانشگاه علوم پزشکی مشهد، دانشگاه علوم پزشکی اصفهان، دانشگاه علوم پزشکی ایران، دانشگاه علوم پزشکی اهواز، دانشگاه علوم پزشکی تربیت مدرس، دانشگاه آزاد اسلامی واحد کرج) ![]() ارتباط فیزیک پزشکی با سایر علوم میتوان گفت که رشته فیزیک تقریبا با بیشتر شاخههای علوم ارتباط دارد. رابطه فیزیک با پزشکی نیز از طریق فیزیک پزشکی برقرار میشود. به بیان دیگر ، فیزیک پزشکی مانند پلی است که بین شاخههای مختلف فیزیک و پزشکی وجود دارد. به عنوان مثال ، فیزیک پزشکی با گرایشهای لیزر و فیزیک هستهای ارتباط تنگاتنگ دارد. آینده فیزیک پزشکی با توجه به کاربردی که علوم در بهینهسازی زندگی بشر دارد، توجه اندیشمندان و نخبگان دنیا به پیشرفت و ترقی شاخههای مختلف علمی معطوف شده است. لذا در حال حاضر شاهد پیشرفت وسیع تکنولوژی هستیم. هر روز وسایل جدید و پیشرفتهتری ساخته میشوند که نسبت به وسایل قبلی از کارایی بیشتری برخوردار هستند. بوجود آمدن وسایل پیشرفته و استفاده از آنها نیازمند تربیت افراد متخصص در این زمینه است. ![]() به بیان دیگر ، هر روز وسایل مختلف پیشرفتهای در علم پزشکی بوجود میآیند. مثلا چاقوی لیزری ، چاقوی پلاسمایی و ... چند نمونه از این موارد فوقالعاده زیاد هستند. اما برای استفاده بهینه از این وسایل و جلوگیری از صدمات جانبی آنها که جان بیمارانی را که بوسیله این ابزار مورد درمان قرار میگیرند، وجود متخصصین فیزیک پزشکی ، امری اجتناب ناپذیر است. بنابراین باید در این زمینه سرمایهگذاری بیشتری انجام شده و نسبت به تربیت چنین افرادی اقدام شود، تا ما نیز در آینده بتوانیم از این حیث به خودکفایی برسیم و شاهد هیچگونه آسیبی ناشی از استفاده نادرست این ابزارها نباشیم. درباره وبلاگ ![]() آخرین مطالب پيوندها ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() ![]()
|
||||||||||||||||||||||||||||||||
![]() |